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Abstract

We experimentally investigate buyer and seller behavior in small markets with two kinds of
frictions. First, a subset of buyers may have (severely) limited information about prices, and
choose a seller at random. Second, sellers may not be able to serve all potential customers. Such
capacity constraints can lead to coordination frictions where some sellers and buyers may not
be able to trade. Theory predicts very di�erent equilibrium outcomes when we vary the set-up
along these two dimensions. In particular, it implies that a higher number of informed buyers
will lead to lower prices when sellers do not face capacity constraints, while prices may actually
increase if sellers are capacity constrained. The latter result, �rst shown by Lester (2011), is
counter-intuitive and we thus call it Lester's paradox. In the experiment, the di�erences between
the constrained and non-constrained case are con�rmed; prices fall when sellers are not capacity
constrained but either do not fall by much or even increase when they are not. Hence we �nd
support for Lester's paradox. We �nd that prices are quite close to the predicted equilibrium
values except in treatments were unconstrained sellers face a large fraction of informed buyers.
Here deviations can be substantial. However, introducing noise into the theoretical decision
making process produces a pattern of deviations that �ts well with the observed ones.
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1 Introduction

Many markets are small and are a�ected by information and coordination frictions. In labor
markets, a worker has a limited number of suitable jobs to apply to, and in housing markets there
is a limited number of properties a buyer can inspect on a given day. In a neighborhood there
may be a limited number of grocery stores that a buyer can approach. Furthermore, in some
markets sellers can serve all customers, like in a grocery store, whereas in other markets sellers are
constrained in their capacity. In labor markets, for instance, usually one job is o�ered at a time
by a �rm, and the same is often the case in the the private segment of the housing maket and the
market for used cars. When capacity is constrained, lack of coordination among applicants can
result in some (suitable) job seekers not �nding a job and some �rms not �nding a worker. That
is, a coordination friction arises.

A substantial theoretical literature on the microstructures of such markets exists. It demon-
strates that even small changes in the capacity of sellers or the informedness of buyers can impact
profoundly on market outcomes.

In one strand of the literature, it is assumed that sellers can serve all buyers that show up,
but that some buyers are uninformed about prices. Varian (1980), Burdett and Judd (1983),
Stahl (1989), and Janssen and Moraga-Gonz�alez (2004) analyze markets where a fraction of buyers
observe all the prices in the market. The remaining buyers are uninformed, and approach a seller
at random. In the resulting equilibrium, sellers randomize over prices. As the fraction of informed
buyers increases, the average price decreases, with the classic Bertrand equilibrium as the limiting
case where price equals marginal cost.1

In another strand of the literature, starting with Montgomery (1991) and developed further by,
among others, Burdett, Shi, and Wright (2001), it is assumed that all buyers observe all prices.
However, sellers only have a limited number of goods for sale, which can be normalized to one. As
buyers make independent decisions, a coordination friction emerges. Some sellers may get many
and some sellers no customers. Where a queue forms, only one buyer will be served. Consequently
market participants may end up without trading. The nature of the resulting equilibrium is in
stark contrast to the equilibrium in which sellers are unconstrained. In the capacity constrained
equilibrium, buyers randomize over which seller to approach, while sellers set a single (and equal)
price. As buyers trade o� the price with the probability of obtaining the good, the price elasticity
of demand is relatively lower and the market price is strictly above the Bertrand price. If the
buyer-seller ratio is high, sellers' may even set prices close to the buyers' willingness to pay.

In a recent paper, Lester (2011) introduces information frictions into a market setting with
capacity constraints. He demonstrates that increasing the fraction of informed buyers may pned



sell up to three units or have only one unit in stock (the capacity constrained case).
Our �ndings are surprisingly consistent with predictions from theory. With capacity constrained

sellers, the buyers' search behavior is remarkably close to what theory predicts, and prices are very
close to the equilibrium predictions. In line with theory, prices are substantially higher when
the buyers are capacity constrained than when they are not. Moreover, having more informed
buyers leads to a substantial fall in prices when sellers are unconstrained but not when they are
constrained, as predicted by theory. Finally, in the presence of capacity constraints, prices are
predicted to increase when going from two to three informed buyers. Our data lend substantial
support to Lester's paradox.

However, we also observe deviations from theory. In markets with no capacity constraints and
two or three informed buyers prices are substantially higher than predicted, and the deviations are
particularly strong in the pure Bertrand treatment. Strong deviations from equilibrium in Bertrand
duopolies have frequently been observed in previous experiments.



the �rst 10 rounds of play. 4 A further di�erence is that our design also allows us to benchmark the
impact of information frictions against the case where sellers do not face capacity constraints.

In our treatments with capacity constraints we test for equilibria in which buyer-coordination
is not permitted. The study by Ochs (1990) analyzes how the degree of coordination depends on



are not capacity constrained,z = c indicates that they are.
The expected payo� of a sellers is � z

s (ps; p� s) = � z(ps; p� s)ps, where� z(ps; p� s) is the expected
number of sales given by the number of units in stock (z), the own price and the prices of other
sellers. The expected payo� of a buyeri conditional on choosing a sellers is vz

i (� s
� i ) = � z(� s

� i )(1 �
ps), where � z(� s

� i ) is the probability of getting the good at seller s given that the other buyers go to
this seller with probabilities � s

� i . If the sellers are not capacity constrained,z = n, this probability
is always 1. If the sellers are capacity constrained, the probability is typically strictly less than
1. If no seller is chosen the payo� is zero. It follows from the assumptions on uninformed buyers
that � s

i = 1=S for all i 2 U. We focus on sub-game perfect equilibria with symmetric (mixed)
strategies. While this is the standard assumption in the theoretical literature, it is also justi�ed
in our experimental set-up since market participants are anonymous and new markets are formed
randomly in each period, making coordination di�cult.

Equilibria with no Capacity Constraints We �rst look at the case where there are at least
some uninformed buyers,U � 1: The number of sales to uninformed customers is binomially dis-
tributed and thus equal to U=S in expectation. The expected sales to informed agents only depend
on whether or not the seller's price is lower than the other �rms' prices. Thus� n (ps; p� s) = N + U=S
if ps is the lowest price and� n (ps; p� s) = U=S otherwise.7 One can show that the symmetric equi-



by 1 � (1 � F (p))S. By using the tail formula again it follows that the expected minimum price at
which the informed buyers purchase the good is given by:

E [pmin ] = p0 +
� 1

p0

�
1 � p



As is common in directed search models, we focus on symmetric mixed buyer strategies. In equilib-
rium informed buyers have to be indi�erent between sellers. That is, the randomization over sellers
by informed buyers must be such that all informed buyers get the same expected value at any seller
they approach with a positive probability. That is, vc

i (� s0

� i ) = vc
i (� s00

� i ) for any s0; s002 S such that
� s

i > 0, s = s0; s00. Together with the requirement
P

s � s = 1 this gives a system of equations that
implicitly determines the functions f � s(ps; p� s)gs2 S; which sellers use in the �rst stage to forecast
buyer behavior.

Next, the probability that a seller s gets at least one buyer is given by:

� c(ps; p� s) = 1 � (1 � � s(ps; p� s))N (1 � 1=S)U :

In general, there can be equilibria with pure or mixed strategies on the sellers' side. In particular,
if there are relatively many uninformed buyers there is an incentive to deviate from a pure strategy
equilibrium by charging the highest price of 1, rendering such an equilibrium impossible. However,
for the parameter constellations of our treatments, there will be only symmetric equilibria where
sellers play pure strategies. These pure strategies can be determined by solving sellers' pro�t
maximization problem

max
ps

� c(ps; p�
� s)ps

given that all the other �rms charge the equilibrium price p� . The seller forecasts the buying
probability � s(ps; p� ) from the indi�erence condition of the buyers: � c(� s)(1 � ps) = � c((1 � � s)=(



3 Parameters and Procedures

We use a 2� 3 design to investigate behavior in experimental markets with S = 2 sellers and
B = 3 buyers. The experiment consists of a class of markets that di�er along two dimensions.
The �rst dimension is whether sellers are capacity constrained or not, i.e. z = c or z = n. The
second dimension is how many of the three buyers are informed,N = 1, N = 2, and N = 3.
Uninformed buyers are strategic dummies, whose actions are restricted to randomize over sellers.
In the experiment uninformed buyers were computer programs ipping fair coins to determine
where to purchase. All informed buyers and all sellers were human subjects.

In all treatments prices and payo�s were measured in experimental currency units (ECUs).



Subjects were recruited online using the ORSEE system (Greiner (2004)). The experiment
was programmed in z-Tree (Fischbacher (2007)), and was contextualized as a market, using terms
such as "sellers", "buyers", "prices" and "queues". Subjects were randomly allocated to numbered
cubicles on entering the lab (to break up social groups). After being seated, each subject was
issued written instructions and these were read aloud by the administrator of the experiment (to
achieve public knowledge of the rules). There were no test periods, and no control questions to
check understanding. Sellers were allowed to post prices with two decimals. Strict anonymity was
preserved throughout. Each period consisted of a posting stage, and a purchase stage. Sellers
posted prices simultaneously, human buyers then observed the prices posted and simultaneously
chose one seller to go to. In treatments with capacity constraints, if a queue formed at a seller the
transacting buyer (human or computer program) was drawn with a uniform probability from the
queue. At the end of each period all subjects got feedback on the whole history of posted prices,
queues at each seller, transactions in the market he or she was operating, as well as own pro�t.

After period 50 was concluded, accumulated ECUs were converted to NOK or Euros (depending
on the location) at a pre-announced exchange rate, and subjects were paid privately on leaving the
lab. On average a session took 70 minutes. In the Oslo treatments average earnings were 54 US
dollars. In the Bertrand treatment ( Tn

3 ) all subjects got a (pre-announced) at fee of 27 US dollars
plus whatever they earned in the session. This was done in order to avoid sellers not earning
money in the experiment. In all other treatments subjects got what they earned plus a show up
fee. Earnings in the Konstanz treatments were adjusted to give the same consumer purchasing
power as the Oslo treatments.

Table 2 provides the expected prices, and the cumulative price distributions and the support
where appropriate, following from theory laid out in Section 2.11 Note that when �rms are capacity
constrained (c), the price is 6 units lower when two buyers are informed as than if all three buyers
are informed (Lester's paradox).

Table 2: Theoretical predictions: Expectation, support and distribution of prices

z N
1 2 3

E(p) = 69 :3 E(p) = 40 :2 E(p) = 0 :0
n p 2 [50; 100] p 2 [20; 100]

F (p) =
�

2p� 100



on the price support and predicts a particular shape of the cumulative price distribution. When
prices are dispersed in equilibrium expected transaction prices are below expected posted prices,
as informed buyers in these cases always go for the lowest price o�ered.

4 Results

Market behavior Figure 1 provides a treatment-by-treatment comparison of observed prices
and their theoretical counterparts, averaged over all periods and all blocks.

Figure 1: Posted prices and transaction prices for each treatment. Average posted prices (trans-
action prices) for treatments Tn

1 to T c
3 are 71.4 (68.8), 52.3 (44.3), 41.6 (32.2), 89.1 (88.0), 68.9

(66.5), 71.9 (70.3), respectively.

As can be seen, average posted prices are remarkably close to the theoretical equilibrium values
in treatments Tn

1 , T c
1 , T c

2 , and T c
3 , while they deviate substantially in treatments Tn

2 and, especially
Tn

3 , the market with Bertrand competition. Transaction prices are similarly close to their respective
equilibrium values, and also exhibit the strongest deviations for treatmentsTn

2 and Tn
3 .12 For

both posted and transacted prices the predicted patterns are clearly visible: prices with capacity
constrained sellers are always above prices with unconstrained sellers. Further, prices decrease with
the number of informed buyers when there are no capacity constraints and either slightly fall or
slightly increase otherwise. We summarize this in the following informal result.

Result 1 (Average prices: data and theory) Average posted prices are very close to the the-
oretical expected prices in treatments Tn

1 , T c
1 , T c

2 , and T c
3 , while they deviate substantially in treat-

ments Tn
2 and Tn

3 . Transaction prices are similarly close and exhibit the same pattern of deviations.

We test di�erences between treatments with one-sided Wilcoxon rank sum (WRS) tests using
blocks as units of observation.

For posted prices the di�erences between treatmentTn
1 and T c

1 (W=-2.402; p=.008), Tn
2 and

T c
2 (W=-2.611;p=.005), and Tn

3 and T c
3 (W=-2.611; p=.005) are all signi�cant at the 1% level.

12 In T n
2 the deviation in percent of the theoretical price is 30.1 for posted prices and 33.0 for transaction prices. In

T n
3 this measure is not de�ned. For the other four treatments deviations in percent of theoretical posted prices are

between 3.3 and 1.1, and between 3.3 and 0.3 for transaction prices.
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Furthermore, posted prices decrease when going from treatmentTn
1 to Tn

2 (W=2.611; p=.005); and
when going from Tn

2 to Tn
3 (W=2.193; p=.014). These price decreases are signi�cant at the 5%

level or better. WRS tests also reveal that posted prices decrease signi�cantly from treatmentT c
1

to T c
2 (W=2.611; p=0.005). The increase in posted prices from treatmentT c

2 to T c
3 , however, is not

signi�cant at conventional levels (W=-1.149; p=0.125). Nonetheless it is close to being signi�cant
at the 10% level, and we �nd this quite remarkable, considering that theory predicts an increase in
prices betweenT c

2 and T c
3 by a measly 6 ECUs, and that the WRS test uses only �ve observations

in each treatment.

Result 2 (Treatment di�erences for posted prices) The di�erences in posted prices between
the treatments with and without capacity constraints for a given number of informed buyers are all
signi�cant. Furthermore, the decrease in posted prices when going from treatment Tn

1 to Tn
2 , from

Tn
2 to Tn

3 , and from T c
1 to T c

2 are signi�cant.

Our results become stronger for transaction prices. The di�erences between treatmentTn
1 and

T c
1 (W=-2.402; p=.008), Tn

2 and T c
2 (W=-2.611; p=.005), and Tn

3 and T c
3 (W=-2.611; p=.005) are all

signi�cant at the 1% percent level. Transaction prices also decrease when going from treatmentTn
1

to Tn
2 (W=2.611; p=.005), and when going from Tn

2 to Tn
3 (W=2.402; p=.008). These reductions

are signi�cant at the 1% level or better. WRS tests also show that transaction prices decrease
signi�cantly from treatment T c

1 to T c
2 (W=2.611; p=.005). Finally, the increase in transaction

prices from treatment T c
2 to T c

3 is now signi�cant at the 10% level, and almost signi�cant at the
5% level (W=-1.567; p=.059). 13

Result 3 (Treatment di�erences for transaction prices) The di�erences in transaction prices
between the treatments with and without capacity constraints for a given number of informed buyers
are all signi�cant. Transaction prices also decrease signi�cantly when going from treatment Tn

1 to
Tn

2 , from Tn
2 to Tn

3 , and from T c
1 to T c

2 , while transaction prices increase signi�cantly when going
from T c

2 to T c
3 .

Table 3 reports regressions of prices on treatment dummies. Standard errors are clustered on
individual sellers to correct for heteroscedasticity. In regressions labeledPP the dependent is the
posted price, while in regressions labeledTP the dependent is the transaction price.

13 With one exception, results are unchanged if the WSR-tests use only data from periods 11-48 (after learning has
taken place and before the onset of endgame e�ects). The one exception is that the drop in posted prices from T n

2 to
T n

3 is no longer signi�cant in a one sided test when data are restricted in this way (W=0.940; p=.174).
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Table 3: Treatment regressions.
PP I PP II TP I TP II

Constant 40.9
���

37.4
���

33.6
���

29.2
���

(2.93) (2.24) (2.42) (1.78)
Tn

1 28.6
���

30.4
���

34.7
���

37.2
���

(3.97) (2.94) (3.62) (2.67)
Tn

2 9.5
��

11.3
���

12.7
���

15.1
���

(3.95) (3.18) (3.42) (2.93)
T c

1 42.7
���

48.1
���

48.7
���

55.0
���

(3.52) (2.51) (3.14) (2.19)
T c

2 24.8
���

28.0
���

30.1
���



that the coe�cient of T c
2 is less than or equal to that of T c

3 with a p-value of 0:061 for posted
prices, and with a p-value of 0:028 for transaction prices. Hence the null hypothesis that prices
do not increase is rejected at a 10% signi�cance level, and is close to being rejected at the 5%
signi�cance level using posted prices, while it is comfortably rejected at the 5% signi�cance level
using transaction prices. Thus, regressing prices on treatment dummies and a time trend lends
further support to Lester's paradox.15 We summarize our �ndings in regard to this price increase
in the following result.

Result 4 (Lester's paradox) Both posted prices and transaction prices increase signi�cantly
from treatment T c

2 to T c
3 . The e�ect with respect to transaction prices is statistically less uncertain

than the e�ect with respect to posted prices.

The regression also shows that transaction prices are below posted prices in all treatments.
For treatments where the optimal strategy prescribes mixing (i.e. Tn

1 , Tn
2 , T c

1 ) this is according
to theory, as informed buyers should take the lowest o�er and not the average one. In the other
treatments theory implies that transaction prices are identical to posted prices, as each seller should
o�er the same price in equilibrium. In Section 4



Figure 2: Average posted prices and average transaction prices over periods.

Result 5 (Price distributions) In treatments Tn
1 , Tn

2 , and T c
1 , where theory predicts price dis-

tributions, the empirical distributions of posted prices roughly match their predicted counterparts.
While the shape is not always well matched, the support is matched quite closely.

Below we analyze how deviations from theoretical price distributions can be accounted for by
noisy seller responses. Prior to that, however, we address the question of how consistent buyer
responses are with theory.

Buyer behavior For the theoretical pricing strategies to make sense, sellers need to believe that
buyers will respond optimally to the prices they post. Do buyers respond optimally to posted
prices? In treatments Tn

1 to Tn
3 and T c

1 the unconditional best response of an informed buyer is
to (try to) purchase from the seller with the lower price. In these treatments a high fraction of
purchase attempts follow the predicted best responses.

Result 6 (Buyer behavior I) When prices between sellers di�er, the average percentage of buy-
ers that go for the lower price is 92.4 in treatment Tn

1 , 98.6 in treatment Tn
2 , 97.1 in treatment Tn

3 ,
and 88.4 in treatment T c

1 .17

In treatments T c
2 and T c

3 the equilibrium conditions require informed buyers to randomize over
which seller to choose such as to make other informed buyers indi�erent in their choice of a seller.

17 The average payment in excess of the lower price paid by subjects in ECU (standard deviation) and by treatment
was 13.5 (17.5) in T n

1 ; 10.3 (16.7) in T n
2 ; 11.1 (14.8) in T n

3 ; 8.6 (10.1) in T c
1 ; 6.2 (5.8) in T c

2 ; and 8.2 (8.4) in T c
3 . In

treatments T n
1 , T n

2 , T n
3 and T c

1 irrational buyer decisions are mainly due to one or two outlying subjects that make
repeated - and often costly - mistakes. In T c

2 and T c
3 visiting the high price seller is more evenly distributed over

buyers, as one would expect in equilibrium.

14



Figure 3: Cumulative price distributions Tn
1 , Tn

2 , and T c
1 : Data and theoretical prediction

To evaluate the optimality of buyer responses in these treatments we used the following procedure





Surprisingly, informed buyer responses seem, if anything, to correspond better with theory when



The QRE distributions was solved using a numerical approximation to a grid with integer prices
0; 1; 2; :::; 100. Distributions were then �tted to observed posted prices using a maximum likelihood
approach. Table 6 reports the parameter estimates, the implied expected prices as well as the
log-likelihoods.

Table 6: QRE estimates

Treatment Tn
1 Tn

2 Tn
3 T c

1 T c
2 T c

3

� 4.4 10.4 4.2 12.4 17.0 5.4
Expected price 70.5 49.7 39.9 83.9 70.4 54.6
Log-Likelihood -6394 -6602 -6594 -5475 -5819 -6578

� 7.5
Log-likelihood -38024
Expected price 72.2 51.6 32.8 79.5 67.0 56.9

Maximum likelihood estimation on a grid of integer prices. With simultaneous

estimation each treatment receives the same weight in the likelihood function.

Figure 5 shows the �tted distributions and the data.

Figure 5: QRE distributions and actual posted price distributions.

While the QRE distributions only roughly approximate the actual ones,20 several features are
remarkable. First, compared to the distributions predicted by theory in treatments Tn

1 , Tn
2 , and

T c
1 shown in Figure 3, the shapes implied by the QRE distributions are much more in line with the

20 The empirical average prices by about 11% on average from the ones implied by the QRE distributions using the
simultaneous estimation (for the individually estimated QRE distributions this deviation becomes 8%). A substantial
part of this is due to the mismatch in treatment T c

3 .

18



data. However, the average prices implied by the QRE distributions are not much closer to the data
than the theoretical expected prices for those three treatments. Further, in the case of treatments
T c

2 and T c
3 , where theory predicts point prices, QRE can rationalize the observed price distributions.

Regarding treatments Tn
2 and Tn

3 we �nd that noisy seller responses can help to understand the
large deviations from the Nash equilibrium. Furthermore, for all treatments, except T c

3 the average
price of the data is reasonably matched by the individually �tted distributions.

Result 8 (Seller behavior I) The individual QRE distributions roughly match the empirical dis-
tributions of Tn

1 to T c
2 . ORE distributions partly rationalize the observed price dispersion in treat-

ments T c
2 and for T c

3 . Furthermore, QRE account well for the substantial deviations from Nash
equilibrium in treatments Tn

2 and Tn
3 .

To better understand why some of the treatments lead to stronger deviations from equilibrium
than others we consider an argument in the spirit of Dufwenberg et al. (2000). We assume that
sellers entertain the belief that any opponent she meets will deviate from the optimal strategy
with positive probability by playing a behavioral mixed strategy. In the following we consider only
the best response to such beliefs, but we are agnostic about possible equilibrium outcomes. Our
examples suggest that the optimal price set by a capacity constrained seller is highly robust to the
particular belief she holds about the noisy response of the opponent. Furthermore, with capacity
constrained sellers the optimal price corresponds closely to the Nash price of the underlying market
game. In contrast to this, the optimal price set by a seller without capacity constraints is much more
sensitive to the belief she holds about the noise of the opponent. Furthermore, without capacity
constraints the optimal price price deviates substantially from the Nash price. In particular the
optimal price is far above the Nash price inTn

2 and (particularly) in Tn
3 .

To be concrete, let the expected pro�ts of a seller be a function of her own price and a partly
behavioral strategy of the other seller. By "partly behavioral" we mean that the price distribution
the other seller uses is a convex combination of the equilibrium price distribution from theory
and a behavioral price distribution. We consider three examples, a mixture of the equilibrium
distribution with a price distribution that is positively skewed ( F (



0 50 100
0

50

100

Figure 6: Expected pro�ts as function of the own price given a 75-25 mixture between the equi-
librium distribution and a "noisy" distribution of the other player. Vertical dashed lines indicate
theoretical expected prices and solid lines average prices in the data.

For treatments Tn
1 and T c

1 the maxima are somewhat to the right of the predicted expected
prices, but the pro�t functions are also relatively at at the maximum, giving only low incentives
to deviate upwards. For treatment T c

3 the maximum for the distributions that include mixtures
with the uniform and the positively skewed distributions are to the left of the equilibrium price.
We do not observe such a deviation in the data. It might help to explain, however, why the QRE
estimates lead to much lower expected prices (see table 6).

Result 9 (Seller behavior II) A seller’s optimal price, given a belief that opponents may be
noise players, corresponds to observed deviations from Nash equilibrium, both in direction and
magnitude.

Comparison to previous experiments. How do our results compare to existing ones? Cason
and Noussair (2007) (hereafter CN) test the Burdett, Shi, and Wright (2001) model. Our design
is very close to theirs. CN �nd average posted prices of 83:7 for periods 39-48.21 In comparison,
average posted prices in periods 39-48 is 75:2 in our T c

3 treatment. So, while CN overshoot the
equilibrium value by 11 percentage points in these 10 periods, we overshoot by only 2:2 percentage
points. Finally, our data converge more rapidly on a value closer to equilibrium in theT c

3 treatment
than the CN data does.22

Anbarci and Feltovich (2014) (hereafter AF) also run a T c
3 treatment. Their design di�ers from

ours (and that of CN) in important ways. 23 They run their T c
3 treatment for 20 periods. Averaging

21 After behavior has stabilized, but before the end game e�ects set in.
22 To see this, compare the dynamic regressions in the appendix of this paper with those in CN.
23 AF run the same subjects in various treatments, using only three separate matching blocks. The design combine

within -and between subjects comparisons, controlling for order e�ects.

20



posted prices over all periods, AF undershoot the equilibrium value by 13:5 percentage points.24

Averaging posted prices only over the last 5 periods reduces this undershooting to 7:9 percentage
points.

In general, buyer reactions in our58r



Summing up, we succeed in replicating the behavioral patterns of existing experiments for
treatments Tn
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6 Appendix

6.1 Some Calculations for the Theoretical Predictions

Here are the predictions for the cases ofS = 2 and B = 3, with N > 0. For the case without
capacity constraints with N < 3 we can easily integrate (2) to get:

E [p] = �
3 � N

2N
ln

3 � N
3 + N

:

Similarly, for the expected minimum price we obtain:

E [pmin ] =
3 � N

N
+

(3 � N )2

E[



Treatment Tn
1 : As all choices give the same pro�ts in equilibrium, expected pro�ts of a seller

equals the rip-o� price of one times the expected number of goods sold to the uninformed buyers.
Total pro�ts in the market with two sellers are therefore 2 � ( 1

4 � 1 + 1
4 � 1 + 1

4 � 2 + 1
4 � 0) � 1 = 2. The

expected number of sales is 3 as all buyers will obtain a good. Thus average pro�t and price equals
E [pT ] = 2=3 � :667.

Treatment Tn
2 : The same reasoning as before applies. Total pro�ts divided by the expected

number of transactions gives:E [pT ] =
2�( 1

2 �1+ 1
2 �0)�1

3 = 1=3 � :333.

Treatment T c
1 : The probability of meeting the uninformed is given by 1 � (1 � 1=S)U = 3=4 in

this case. The expected number of total transactions is 1 for the seller with the lower price as that
seller always gets at least the informed buyer. The other buyer gets an uninformed with probability
3=4. Total pro�ts per transaction are then E[pT ] = 2�3=4�1

7=4 = 6=7 � :857.

6.2 Buyer responses z=c case

Here we compute the individual buyer's best response functions� 1(p1; p2) from the indi�erence
condition � c(� 1)(1 � p1) = � c(1 � � 1)(1 � p2) for casesN = 2 and N = 3 :

N = 2 case:

� 1(p1; p2) =

8
>>>><

>>>>:

0:5 if p1 = p2

0 if 4 + 5p2 � 9p1 < 0

1 if 4 + 5p1 � 9p2 < 0
4+5 p2 � 9p1
4(2� p1 � p2 ) o.w.

N = 3 case:

� 1(p1; p2) =

8
>>>><

>>>>:

0:5 if p1 = p2

0 if 2 + p2 � 3p1 � 0

1 if 2 + p1 � 3p2 � 0
(4� 3p1 � p2 �

p
16(1� p1 � p E1� 9



We estimate the regressions with random intercepts for subjects, and corrected standard errors
for correlation over panels (Prais-Winsten regression). In both speci�cations we follow the experi-
mental literature and exclude the last two periods from the estimations, so that �t = 48.29 Table 7
provides the estimates for posted prices with the �rst speci�cation, table 8 provides the estimates
for posted prices with the second speci�cation.

Table 7: Convergence regressions

Tr � 11 � 12 � 13 � 14 � 15 � 21 � 22 � 23 � 24 � 25 H A
0 E(p)

Tn
1 50.6 66.9 46.4 62.9 57.7 77.5 63.1 68.8 87.1 66.4 .000 69.2

(5.77) (7.50) (8.92) (4.69) (7.73) (1.42) (1.85) (2.19) (1.16) (1.90)
Tn

2 56.9 54.4 51.3 57.5 50.2 51.0 50.5 51.7 59.9 46.6 .000 40.2
(9.28) (7.96) (8.43) (9.58) (5.48) (2.56) (2.19) (2.32) (2.64) (1.51)

Tn
3 49.0 37.4 60.2 35.6 50.9 51.1 25.3 36.9 51.6 37.4 .000 0.0

(8.08) (7.44) (6.25) (9.34) (8.37) (2.50) (3.30) (1.94) (2.89 (2.59)
T c

1 58.6 57.8 78.3 55.9 80.1 98.5 93.5 90.6 86.2 87.5 .000 86.3
(2.91) (5.39) (4.86) (4.32) (3.00) (0.80) (1.49) (1.33) (1.19) (0.83)

T c
2 62.9 57.5 53.0 52.6 61.2 67.6 73.5 68.2 76.2 64.0 .000 66.7

(3.85) (2.93) (6.37) (3.54) (2.66) (1.11) (0.85) (1.84) (1.03) (0.77)
T c

3 47.6 49.3 57.3 55.3 57.3 67.6 80.0 76.1 69.6 75.1 .000 72.7
(5.14) (3.85) (1.92) (2.52) (3.38) (1.65) (1.24) (0.62) (0.81) (1.09)

Dependent: posted prices. Prais-Winsten regressions treatment by treatment, with seller random e�ects . Coe�cients

(standard errors).

From Table 7 we observe that for treatmentsT c
1 to T c

3 each� i 2 term is closer to the equilibrium
price than its corresponding � i 1 term. In treatments Tn

1 to Tn
3 a slim majority - three of �ve - � i 2

terms are closer to equilibrium than their corresponding� i 1 terms. Thus, for treatments T c
1 to T c

3
there is clear evidence of weak convergence towards equilibrium, while the evidence is not as strong
for treatments Tn

1 to Tn
3 . In all treatments the null that all � i 2 terms are equal can be rejected

with high degree of certainty. Thus, convergence is not strong in any treatment.
Next, consider Table 8. Except for treatments Tn

2 to Tn
3 , the estimate of � 2 is less than �ve

points from the equilibrium value. In treatment Tn
2 and especially in treatment Tn

3 , the deviations
are substantial. Except for treatment T c

3 , the null of no di�erence between � 2 and the equilibrium
can be rejected. In treatment T c

3 this null cannot be rejected.
The variance of posted prices generally declines over time in each treatment. Except forTn

2
variance declines in a majority of the matching blocks, and inTn

1 , T c
1 and T c

3 variance declines
inn all �ve matching blocks, as shown in table 9. Qualitatively, the regressions are consistent



Table 8: Equilibrium convergence

Tr � 11 � 12 � 13 � 14 � 15 � 2 E(p) H B
0

Tn
1 56.2 57.6 42.4 73.8 50.6 72.7 69.2 .000

(6.55) (9.50) (9.62) (8.97) (8.79) (0.91)
Tn

2 56.2 53.3 51.1 63.1 46.2 52.0 40.2 .000
(9.04) (7.82) (8.22) (10.28) (6.03) (1.00)

Tn
3 52.7 34.1 59.1 41.9 48.3 40.0 0.0 .000

(9.43) (9.87) (6.61) (10.03) (8.44) (1.08)
T c

1 63.7 59.5 78.4 53.1 77.9 91.2 86.3 .000
(4.66) (5.58) (4.94) (5.05) (3.55) (0.69)

T c
2 61.7 59.8 54.3 56.2 59.5 69.8 66.7 .000

(4.10) (3.43) (6.63) (4.71) (3.88) (0.70)
T c

3 47.1 51.3 57.7 54.7 58.7 73.6 72.7 .173
(5.85) (4.78) (2.25) (3.11) (3.45) (0.67)

Dependent: posted prices. Prais-Winsten regressions treatment by treatment,

with seller random e�ects . Coe�cients (standard errors).

Table 9: Variance in posted prices

� 11 � 12 � 13 � 14 � 15 � 21 � 22 � 23 � 24 � 25 H A
0

Tn
1 1280.5 427.7 746.6 1493.8 1076.5 120.3 324.6 408.0 53.1 269.2 .000

(98.0) (135.6) (177.1) (102.0) (177.7) (21.0) (29.1) (38.0) (21.9) (38.1)
Tn

2 484.4 293.5 143.6 89.9 1168.7 451.7 623.3 555.5 576.3 666.5 .035
(220.9) (255.5) (258.7) (236.1) (208.8) (49.0) (56.7) (57.4) (52.4) (46.3)

Tn
3 144.3 446.4 821.6 605.2 396.4 460.5 279.9 147.5 257.2 454.5 .061

(309.7) (322.6) (160.0) (195.0) (357.0) (101.2) (105.4) (52.3) (63.7) (116.7)
T c

1 346.3 1306.7 502.7 1058.6 258.8 14.5 48.4 144.2 66.1 141.1 .000
(49.5) (207.2) (171.7) (114.7) (50.2) (11.0) (45.9) (38.0) (25.4) (11.1)

T c
2 648.6 412.0 453.9 51.8 72.5 139.7 21.7 148.9 60.4 124.6 .000

(88.3) (36.0) (97.6) (52.8) (81.6) (18.8) (7.7) (20.8) (11.2) (17.4)
T c

3 890.6 900.4 192.7 62.5 811.3 50.4 60.2 66.4 25.4 77.2 .003
(132.6) (143.2) (45.6) (37.8) (41.8) (33.1) (35.7) (11.4) (9.4) (10.4)

Dependent: Variance in posted prices. Prais-Winsten regressions treatment by treatment, with seller random e�ects.

Coe�cients (standard errors).
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